2016 3D Design & Fabrication Challenge Complete

Our school year has ended and so has this year’s 3D Design & Fab Challenge at The School. I’m always revising the parts and processes of this unit each year, and (hopefully) improving it on each revision. That said, I think that this year’s crew of 5th graders have performed outstanding feats of design. Each group went through 2 – 4 design revisions, and while I would budget even more time for revisions next year, I was really happy with their work. We ended the unit with a pop-up gallery of all the student work and samples of their design documents, interviews, drawings and early prototypes. Some final products were 3D printed, few were hand-made from craft materials, and a few others were hybrids of the two. Parents and teachers came to experience the work and it was great to see the students talking about their process and their products with adults!

Unsurprisingly, we have authentic, student-designed solutions to these authentic problems that teachers posed to us many months ago. Enjoy the photos and captions below of all the student designs:

While I personally would love to share these 3D files on a hosted platform like Thingiverse or YouMagine right away, I should talk to those students first. My fifth graders are certainly under 13-years old, which means that they can’t yet have accounts on these sites based on privacy concerns, but more importantly I never got their permission to share their work for them. 🙂

One of my concerns about this project was that I never truly touched on issues of IP, CC licensing, or the Open Source movement with the students. A new goal for me next year is to bring these issues to them, and to encourage them to find a way to share their designs with the world via these Open Source platforms. For now, we’ll all have to enjoy these photos until a future share date!

Revise, Revise, Revise

We’re deep in the trenches and doing the hard work that engineers, designers and inventors must do for the next few weeks. Something I thought to briefly touch on again this week before letting the student work independently was to have a quick discussion of two engineering design cycle diagrams. I handed out both, students read and talked to each other about similarities and differences, and then we had a brief discussion and I talked about how they will go through the cycle a few times, just like professional engineers do.

Enjoy these two diagrams. They are my favorite ones for sharing with students.

Copyright: Engineering Is Elementary

Copyright: Engineering Is Elementary

Copyright: The Works Museum

Copyright: The Works Museum

Choose Your Own (Design) Adventure

This week our 3D design & fabrication jobs were announced to the 5th graders. [You can read this year’s list here] Each year I make a request to the faculty and staff at our school for authentic design challenge proposals. Students will then work towards making their own solutions these problems right here in our building. I usually prefer challenges that are not too physically “big” so that the students can manage the crafting portion of these challenges. For example, it’s more appropriate on “scissor storage” or “door stops” rather than “auditorium lighting”.

After reviewing the list of challenges, students are encouraged to form teams and apply their new engineering design and 3D modeling skills toward solving these authentic problems. They must conduct themselves through all phases of the design cycle that we have studied, questioning, researching, brainstorming, prototyping and revising their solutions until the end of the school year. We prototype with high and low tech materials, like craft sticks, cardboard, power tools and 3D printers.

Here’s to happy inventing!

Project Astroleo: Our HAB is Ready for Launch!

Our custom, student-designed, student-built, student-programmed HAB rig is finally ready for launch. PVC pipe structure with 3D printed joint connectors. RaspberryPi controller with SenseHat data logger coded with Python. PiCamera capturing HDMI video and stuffed Astroleo selfie-shots. Arduino GPRS+GSM tracking system. 3D printed cases and mounts all the electronics.

Let’s hope for a clear day with kind winds in the future. Our planned launch is halted if we don’t have clear skies or if the prevailing winds would blow the balloon into NYC airspace, or simply send the rig over the Atlantic Ocean where we cannot recover the payload.

Learning TinkerCAD with Autodesk Project Ignite

The next step in our 5th grade 3D design journey is to graduate from 2D & 3D hand drawing into 3D computer modeling. I prefer to introduce students to this skill with TinkerCAD, a free, browser-based CAD software for solid modeling, that let’s users render complex shapes from generic 3D primitives (cubes, spheres, cylinders, wedges, etc.). Software giant, Autodesk, acquired TinkerCAD in 2013. In the past I have used the standard TinkerCAD tutorials on the site to teach an introduction to CAD before we move on to producing 3D printable parts. Students explore and follow the step-by-step guides and learn to navigate the 3D environment and build sample 3D objects like coat
buttons and chess pawns. It was OK. The self-paced nature certainly made it better for attention spans – better than an instructor droning on and on at the front of the classroom 😉 

This year I learned about Autodesk’s new initiative for design education named Project Ignite. Basically it’s a new software tutorial and training platform for learning TinkerCAD and 123D Circuits, that’s based around different design projects. It’s also has some features of an LMS (learning management system) like work assignments, and basic student progress tracking.

The short version of this tale is that I think that these new TinkerCAD tutorials from Project Ignite are a huge leap forward from the original TinkerCAD tutorials. In the short time that we’ve tested them here, I see a huge improvement in skills and comfort-level with my students. The lessons are more organized, better sequenced and more thorough. They also build in room for “free-design”, which is great for keeping students engaged. Of course, as before I also love the they are self-paced so students can move along at their own speed and I can answer their questions individually or, if I notice a trend, I can pause the whole group and facilitate a quick mini-lesson on a particular concept that many of them are struggling with at the moment.

Before I move on to giving students our open-ended design challenges, I will task them with working on the following tutorial sets on the site: Let’s Learn TinkerCAD!, Making Everyday Objects Pt. 1, Making Everyday Objects Pt. 2. Each one contains 5 sub-lessons, so it’s quite a bit of content, but it will give everyone the room to run to their own course at the speed that works for them.